任新国
简介:
教育背景:
- 1994 - 1998, 南开大学物理系,本科
- 1998 - 2001,中科院理论物理研究所,硕士
- 2001 - 2006,德国奥格斯堡大学物理研究所,博士
工作经历:
- 2006.04 - 2012.12,德国弗里兹-哈伯研究所,博士后
- 2013.01 - 2019.10,中国科学技术大学,特任研究员
- 2019.11 至今,中国科学院物理研究所,特聘研究员
主要研究方向:
- 电子结构计算方法和算法的发展
- 第一性原理计算软件的开发
- 材料模拟计算与预测
过去的主要工作及获得的成果:
- 参与发展了基于无规相近似(RPA) 的电子系统基态能量计算方法,并推动了该方法在计算材料科学中的应用。
- 作为主要作者之一开发了开发国际上著名的从头计算软件FHI-aims (https://aimsclub.fhi-berlin.mpg.de/);作为主要指导老师之一组织、推动国内第一性原理计算软件ABACUS (http://abacus.ustc.edu.cn/)的发展和完善
代表性论文及专利:
- X. Qu, P. Xu, R. Li, G. Li, L. He, and X. Ren, “Density Functional Theory Plus Dynamical Mean Field Theory within the Framework of Linear Combination of Numerical Atomic Orbitals: Formulation and Benchmarks”, J. Chem. Theory Comput. 18, 5589 (2022).
- M. Tahir, T. Zhu, H. Shang, J. Li, V. Blum, and X. Ren, “Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks”, J. Chem. Theory Comput. 18, 5297 (2022).
- S. Yang and X. Ren, “Phase stability of the argon crystal: first-principles study based on random phase approximation plus renormalized single excitation corrections”, New J. Phys. 24, 033049 (2022).
- Y. Wang, P. Rinke, and X. Ren, “Assessing the G0W0Γ0(1) Approach: Beyond G0W0 with Hedin’s Full Second-Order Self-Energy Contribution”, J. Chem. Theory Comput. 17, 5140 (2021).
- X. Ren, F. Merz, H. Jiang, Y. Yao, M. Rampp, H. Lederer, and M. Scheffler, “All-electron periodic G0W0 implementation with numerical atomic orbital basis functions: Algorithm and benchmarks”, Phys. Rev. Mater. 5, 013807 (2021).
- P. Lin, X. Ren, and L. He, “Accuracy of Localized Resolution of the Identity in Periodic Hybrid Functional Calculations with Numerical Atomic Orbitals”, J. Phys. Chem. Lett. 11, 3082 (2020).
- Y. Gao, W. Zhu, and X. Ren, “Long-range behavior of a nonlocal correlation-energy density functional based on the random-phase approximation”, Phys. Rev. B 12, 035113 (2020).
- M. N. Tahir and X. Ren, "Comparing particle-particle and particle-hole channels of the random phase approximation", Phys. Rev. B, 99, 195149 (2019).
- Q. Wang, D. Zheng, L. He, and X. Ren, “Cooperative Effect in a Graphite Intercalation Compound: Enhanced Mobility of AlCl4 in the Graphite Cathode of Aluminum-Ion Batteries”, Phys. Rev. Applied 12, 044060 (2019).
- P. Li, X. Ren, and L. He, “First-principles calculations and model analysis of plasmon excitations in graphene and graphene/hBN heterostructure”, Phys. Rev. B 96, 165417 (2017).
- X. Ren, N. Marom, F. Caruso, M. Scheffler and Patrick Rinke, "Beyond the GW approximation: A second-order screened exchange correction", Phys. Rev. B 92, 081104 (2015).
- X. Ren, P. Rinke, G. E. Scuseria, and M. Scheffler, “Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks”, Phys. Rev. B 88, 035120 (2013).
- X. Ren, P. Rinke, C. Joas, and M. Scheffler, “Random-phase approximation and its applications in computational chemistry and materials science”, J. Mater. Sci. 47, 7447 (2012).
- X. Ren, P. Rinke, V. Blum, J. Wieferink, A. Tkatchenko, A. Sanfilippo, K. Reuter, and M. Scheffler, “Resolution-of-identity approach to HartreeFock,hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions”, New J. Phys. 14 053020 (2012).
- X. Ren, A. Tkatchenko, P. Rinke, and M. Scheffler, “Beyond the Random Phase Approximation: the Importance of Single excitations”, Phys. Rev.Lett., 106, 153003 (2011).
- X. Ren, I. Leonov, G. Keller, M. Kollar, I. Nekrasov, and D. Vollhardt, “LDA+DMFT computation of the electronic spectrum of NiO”, Phys. Rev. B 74, 195114 (2006).
目前的研究课题及展望:
- 密度泛函理论,特别是基于无规相近似(RPA)的先进交换关联能量泛函研究
- 格林函数理论,特别是基于GW近似的激发态计算方法
- 大型从头计算软件的开发
培养研究生情况:
有在读研究生6名,已毕业4名。目前计划在物理所每年招收硕士、博士生1-2名。
电话:
010-82649603
Email: