王雪龙
简介:
2022.11--: 中国科学院物理研究所 怀柔清洁能源前沿研究中心 副研究员,博士生导师
2019.06-2022.10:美国Brookhaven国家实验室化学系 博士后研究助理
2017.02-2019.06:美国Brookhaven国家实验室化学系 交流学生
2013.09-2019.06:中国科学院物理研究所 凝聚态物理 博士
2009.09-2013.06:中国人民大学物理学院 物理学 学士
2023年起获得国家海外高层次人才引进青年项目支持,2024年起担任中国科学院大学岗位教师
主要研究方向:
下一代高性能固态二次电池。以多尺度理论模拟仿真为主,结合多种先进表征技术及数据分析手段,研究二次电池材料和器件中的物理化学过程;积极推动怀柔清洁能源中心数字化建设和数据库搭建。
过去的主要工作及获得的成果:
1. 结合跨尺度理论计算、中子全散射对关联函数(nPDF)和逆蒙特卡洛(RMC)模拟方法,实现了新型富锂阳离子无序岩盐(DRX)正极材料复杂结构的定量统计和描述,建立起组分-结构-性能之间的关系框架,通过材料理性设计实现定向性能优化。
Energy Environ. Sci. 2024, 17, 4977; J. Am. Chem. Soc. 2023, 145, 21, 11717; Adv. Energy Mater. 2023, 13, 2301636.
2. 结合原子尺度密度泛函理论(DFT)计算、颗粒尺度有限元方法(FEM)模拟以及扫描电子显微(SEM)成像结构提取,揭示了从颗粒到极片层次高电压钴酸锂正极的力-电化学耦合失效行为以及原子层次起因。
Small Sci. 2024, 2400162; Appl. Phys. Lett. 2024, 审稿中
3. 结合DFT计算模拟和超分辨透射电子显微(TEM)成像,首次观察到高镍层状正极O3-O1相变微观局部结构,理论计算定量描述了相变微观结构和局部应变应力的关联关系。
Nat. Mater. 2023, 22, 235–241; Matter 2023, 6(4), 1265-1277.
4. 结合DFT计算与同步辐射X射线非弹性共振吸收谱(RIXS)、X射线吸收谱(XAS)、nPDF,在一系列锂电池、钠电池正极材料中揭示氧参与电荷补偿的不同机制和行为。
Nat. Commun. 2023, 14, 7665; Joule 2021, 5, 720; Adv. Funct. Mater. 2021, 31, 2001633.
代表性论文及专利:
截至2024年9月,参与发表SCI论文50篇,引用3440,h因子30,其中20篇第一/共一/通讯作者:
[1] Zan, M.; Xie, H.; Jiao, S.; Jiang, K.; Wang, X.*; Xiao, R.*; Yu, X.*; Li, H.; Huang, X. (2024) On the Much‐Improved High‐Voltage Cycling Performance of LiCoO2 by Phase Alteration from O3 to O2 Structure Small Sci. 2400162.
[2] Jiao, S.; Sun, Y.; Shi, D.; Zhang, Y.; Wang, X.*; Liu, J.*; Kang, L.; Wang, F.; Yu, X.*; Li, H.; Chen, L.; Huang, X. (2024) Structural regulation-induced Li-electron disentanglement for stabilized oxygen redox of Li-excess disordered rock-salt cathode materials. Energy Environ. Sci. 17, 4977
[3] Wang, X.1; Yin, L.1; Ronne, A.; Zhang, Y.; Hu, Z.; Tan, S.; Wang, Q.; Song, B.; Li, M.; Rong, X.; Lapidus, S.; Yang, S.; Hu, E.*; Liu, J.* (2023) Stabilizing lattice oxygen redox in layered sodium transition metal oxide through spin singlet state, Nature Comm. 14 (1) 7665.
[4] Jiao, S.; Sun, Y.; Wang, J.; Shi, D.; Li, Y.; Jiang, X.; Wang, F.; Zhang, Y.*; Liu, J.; Wang, X.*; Yu, X.*; Li, H.; Chen, L.; Huang, X. (2023) The Mechanism of Fluorine Doping for the Enhanced Lithium Storage Behavior in Cation‐Disordered Cathode Oxide, Adv. Energy Mater. 2301636.
[5] Sun, Y.; Jiao, S.; Wang, J.; Zhang, Y.*; Liu, J.*; Wang, X.*; Kang, L.; Yu, X.*; Li, H.; Chen, L.; Huang, X. (2023) Expandable Li Percolation Network: The Effects of Site Distortion in Cation-Disordered Rock-Salt Cathode Material. J. Am. Chem. Soc. 145(21), 11717-11726.
[6] Wang, C.1; Wang, X.1; Zou, P.; Zhang, R.; Wang, S.; Song, B.; Low, K.; Xin, H. L. (2023). Direct observation of chemomechanical stress-induced phase transformation in high-Ni layered cathodes for lithium-ion batteries. Matter 6(4), 1265-1277.
[7] Rui, N.1; Wang, X.1; Deng, K.; Vivas, J. M.; Rosales, R.; Zhang, F.; Xu, W.; Waluyo, I.; Stavitsky, E.; Senanayake, S. D.; Liu, P.; Rodriguez, R. A. (2023) Atomic Structural Origin of the High Methanol Selectivity over In2O3–Metal Interfaces: Metal–Support Interactions and the Formation of a InOx Overlayer in Ru/In2O3 Catalysts during CO2 Hydrogenation. ACS Catalysis 13 (5), 3187-3200.
[8] Wang, C.1; Wang, X.1; Zhang, R.; Xin, H. L. (2023) Resolving complex intralayer transition motifs in high-Ni-content layered cathode materials for lithium-ion batteries. Nat. Mater. 22, 235–241.
[9] Liang, W.1; Wang, X.1; Yang, W.; Zhao, S.; Wiley, D.; Haynes, B. S.; Jiang, Y.; Liu, P.; Huang, J. (2023) Tailoring and identifying acid sites on metal oxo-cluster of metal-organic framework for dihydroxyacetone conversion. ACS Cent. Sci. 9, 1, 27–35.
[10] Xie, Z.1; Wang, X.1; Chen, X.; Liu, P.; Chen, J. G. (2022). General Descriptors for CO2-assisted Selective C-H/C-C Bond Scission in Ethane. J. Am. Chem. Soc. 144, 4186-4195.
[11] Wang, X.; Ramirez, P. J.; Liao, W.; Rodriguez, J. A.; Liu, P. (2021). Cesium-Induced Active Sites for C-C Coupling and Ethanol Synthesis from CO2 Hydrogenation on Cu/ZnO(000 ) Surfaces. J. Am. Chem. Soc. 143, 13103-13112.
[12] Wang, X.; Fan, X.; Yu, X.; Bak, S.; Shadike, Z.; Waluyo, I.; Hunt, A.; Senanayake, S. D.; Li, H.; Chen, L.; Wang, C.; Xiao, R.; Hu, E.; Yang, X.-Q (2021). The Role of Electron Localization in Covalency and Electrochemical Properties of Lithium‐Ion Battery Cathode Materials. Adv. Funct. Mater. 31, 2001633.
[13] Hu, E.1; Li, Q.1; Wang, X.1; Meng, F.; Liu, J.; Zhang, J.-N.; Page, K.; Xu, W.; Gu, L.; Xiao, R. (2021). Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. Joule 5, 720-736.
[14] Wang, J.1; Wang, X.1; Liu, B.; Lu, H.; Chu, G.; Liu, J.; Guo, Y.-G.; Yu, X.; Luo, F.; Ren, Y. (2020). Size effect on the growth and pulverization behavior of Si nanodomains in SiO anode. Nano Energy 78, 105101.
[15] Nie, K.1; Wang, X.1; Qiu, J.; Wang, Y.; Yang, Q.; Xu, J.; Yu, X.; Li, H.; Huang, X.; Chen, L. (2020). Increasing Poly(ethylene oxide) Stability to 4.5 V by Surface Coating of the Cathode. ACS Energy Lett. 5, 826-832.
[16] Mao, Y.1; Wang, X.1; Xia, S.; Zhang, K.; Wei, C.; Bak, S.; Shadike, Z.; Liu, X.; Yang, Y.; Xu, R. (2019). High‐voltage charging‐induced strain, heterogeneity, and micro‐cracks in secondary particles of a nickel‐rich layered cathode material. Adv. Funct. Mater. 29, 1900247.
[17] Hu, E.1; Wang, X.1; Yu, X.; Yang, X.-Q. (2018). Probing the complexities of structural changes in layered oxide cathode materials for Li-ion batteries during fast charge–discharge cycling and heating. Acc. Chem. Res. 51, 290-298.
[18] Wang, X.; Xiao, R.; Li, H.; Chen, L. (2017). Quantitative structure-property relationship study of cathode volume changes in lithium-ion batteries using ab-initio and partial least squares analysis. J. Materiomics 3, 178-183.
[19] Wang, X.; Xiao, R.; Li, H.; Chen, L. (2017). Oxysulfide LiAlSO: a lithium superionic conductor from first principles. Phys. Rev. Lett. 118, 195901.
[20] Wang, X.; Xiao, R.; Li, H.; Chen, L. (2016). Oxygen-driven transition from two-dimensional to three-dimensional transport behavior in β-Li3PS4 electrolyte. Phys. Chem. Chem. Phys. 18, 21269-21277.
目前的研究课题及展望:
目前以研究骨干身份参加国家自然科学基金委重大项目“全固态电池表界面化学基础研究”(2024年开始)。主要研究方向有:
1,新型高比能锂电池正极材料复杂相变机制和材料设计
2,原子-颗粒-极片多尺度二次电池性能衰减机制模拟仿真
3,固态电池多相复合体系离子输运机制
4,多维度测试表征数据库建设和数据分析
培养研究生情况:
计划每年招收博士研究生1~2名,每两年招收博士后1名,欢迎联合培养博士、硕士研究生。目前有局域网络运维和数据库维保项目岗位开放
其他联系方式:
电话:(010)81258889
地址:北京市怀柔区雁栖经济开发区永乐北二街EA-507
Email: