李贝贝
简介:
李贝贝,1987年生,2018年10月加入中国科学院物理研究所。
personal website: //www.denisamo.com/moreintro.php?id=3394.
入选中国科学院海外引进人才计划,任特聘研究员,博士生导师,任L02课题组长。
研究方向聚焦于高品质因子光学微腔精密传感方面,包括高灵敏超声波探测、高灵敏磁力仪、布里渊激光、光学频率梳等方面。共发表期刊论文46篇。第一/通讯作者论文24篇,包括PRX 1篇,Light 1篇,PNAS 1篇(ESI高被引论文),Optica 1篇,Adv. Matter. 1篇等。研究成果被引超过2700次,h-index为23。多次受邀在国内外学术会议上做报告,撰写多篇综述文章,并受邀成为多个期刊的审稿人。受邀成为The Innovation, Photonics Research, Photonic Sensors期刊的青年编委。颗粒物检测成果入选“2014年度高校十大科技进展”。
2019年获得“饶毓泰基础光学奖”。
2022年获得国家优青项目支持。
2024年获得科技创新2030“量子通信与量子计算机”重大项目青年科学家项目支持。
教育经历
- 2009/09-2014/07,北京大学,物理学院光学所,博士
导师:肖云峰教授;Group website: http://researchgroups.pku.edu.cn/microcavity.
- 2005/09-2009/07,天津大学,理学院应用物理学,学士
工作经历
- 2018/10-至今,中科院物理所,特聘研究员
- 2017/09-2018/10, 2014/11-2016/10, 昆士兰大学(澳大利亚),博士后
获得University of Queensland Postdoctoral Research Fellowship. Supervisor: Prof. Warwick Bowen. Group website: http://www.physics.uq.edu.au/QOlab/.
- 2016/11-2017/08, 2014/08-2014/10,航天五院钱学森空间技术实验室,助理研究员
主要研究方向:
研究方向简介—回音壁模式光学微腔:
回音壁模式光学微腔具有极高的品质因子与较小的模式体积,可以极大增强光与物质相互作用,已在腔量子电动力学、腔光力学、高灵敏传感器、微型激光器、非线性光学、光学频率梳、集成光子学滤波器等方面获得广泛应用。申请人自2009年以来长期从事高品质因子光学微腔方面的研究。自2018年入所以来,申请人在物理所从0到1完全自主搭建了微腔光子学实验研究平台,包括搭建光学超净实验室,搭建光学微腔的制备与测量平台。利用所里微加工实验室的微纳加工设备,已自主制备出品质因子超过108的SiO2光学微腔与品质因子超过107的Si3N4光学微腔,二者均达到国际先进水平。申请人基于高品质因子光学微腔开展精密测量及非线性光学方面的研究,在高灵敏超声波探测器、高灵敏微腔磁力仪、微腔布里渊激光、微腔光学频率梳等方面获得一系列创新成果。申请人共发表期刊论文39篇,以及专著章节一章。第一/通讯作者论文19篇,包括PNAS 1篇(ESI高被引论文),Optica 1篇,Adv. Matter. 1篇等。研究成果被引超过2500次,h-index为22。多次受邀在国内外学术会议上做报告,撰写多篇综述文章,并受邀成为多个期刊的审稿人。申请人受邀成为The Innovation, Photonics Research, Photonic Sensors期刊的青年编委。申请人于2019年获得“饶毓泰基础光学奖”。颗粒物检测成果入选“2014年度高校十大科技进展”。近几年代表成果包括:
(1) 高灵敏超声波探测器:利用高品质因子光学微腔实现高灵敏度超声波探测器,达到仅受限于机械热噪声的灵敏度。利用半径较小(R=28 μm)的光学微腔实现较高频率(MHz频段)的超声波探测,首次将空气中将空气耦合的超声波探测拓展到1 MHz以上频段。在0.25 MHz-3.2 MHz频率范围内实现了46 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。相应的力灵敏度达到118 fN/Hz1/2,为目前微腔超声波探测器中的最高纪录。此外,利用半径较大(R=300 μm)的光学微腔实现较低频率(kHz频段)的超声波灵敏探测,在30 kHz-500 kHz频率范围内实现了1.18 μPa/Hz1/2-10 mPa/Hz1/2的灵敏度。其中,我们实现的1.18 μPa/Hz1/2的峰值灵敏度为微腔超声波探测器中的最高记录。
(2) 高灵敏磁力仪:通过将磁致伸缩材料与光学微腔结合,实现了常温工作、片上集成、高灵敏度、高宽带的微腔磁力仪。通过磁控溅射镀膜制备磁致伸缩材料薄膜,实现了微腔磁力仪的批量、可重复性的制备方法,灵敏度达到7.3 pT/Hz1/2,为目前微腔磁力仪的最高记录,且与同等尺寸超导量子干涉器件(SQUID)相当,带宽达到MHz以上。进一步,利用压缩光抑制微腔磁力仪系统中的散粒噪声,从而突破标准量子极限,将磁力仪的量子噪声抑制2.5 dB,进而实现了磁力仪灵敏度和带宽的显著增加。
(3) 微腔布里渊激光:利用品质因子超过1.5×108,自由光谱范围为10.8 GHz的光学微腔实现了布里渊激光。为了进一步提高布里渊光力耦合强度,通过在微腔边缘制备纳米级的布拉格光栅,使得相向传播的光学模式之间通过背向散射发生强耦合,从而产生一对相隔布里渊频移的光学超模,使得可在任意大小的微腔中实现布里渊散射,且泵浦模式与布里渊模式空间场分布相同,从而显著提高光力耦合强度。当泵浦超模中的高频模式时,实现了双向激射的声子激光,声子激光线宽窄至68.8 Hz,比前期工作降低一个量级以上;当泵浦低频模式时,实现了光力强耦合,光力耦合强度大于100 MHz。该体系单光子光力耦合强度高达12.52 kHz,比前人工作提高一个量级以上。
过去的主要工作及获得的成果:
共发表期刊论文46篇。第一/通讯作者论文24篇,包括PRX 1篇,Light 1篇,PNAS 1篇(ESI高被引论文),Optica 1篇,Adv. Matter. 1篇等。研究成果被引超过2700次,h-index为23。多次受邀在国内外学术会议上做报告,撰写多篇综述文章,并受邀成为多个期刊的审稿人。受邀成为The Innovation, Photonics Research, Photonic Sensors期刊的青年编委。颗粒物检测成果入选“2014年度高校十大科技进展”。于2019年获得“饶毓泰基础光学奖”。2022年获得国家优青项目支持,2024年获得科技创新2030“量子通信与量子计算机”重大项目青年科学家项目。
代表性论文及专利:
Google scholar page:
https://scholar.google.com.au/citations?user=m5aYHRIAAAAJ&hl=en
Journal Publications (# denotes the co-first author, and * denotes the corresponding author):
1. Zhi-Gang Hu#, Yi-Meng Gao#, Jian-Fei Liu#, Hao Yang, Min Wang, Yuechen Lei, Xin Zhou, Jincheng Li, Xuening Cao, Jinjing Liang, Chao-Qun Hu, Zhilin Li, Yong-Chang Lau*, Jian-Wang Cai*, Bei-Bei Li*, “Picotesla-sensitivity microcavity optomechanical magnetometry,” Light Sci. Appl. (2024), accepted. arXiv:2403.14301v1.
2. Min Wang#, Zhi-Gang Hu#, Chenghao Lao, Yuanlei Wang, Xing Jin, Xin Zhou, Yuechen Lei, Ze Wang, Wenjing Liu, Qi-Fan Yang*, and Bei-Bei Li*, “Taming Brillouin optomechanics using supermode microresonators”, Phys. Rev. X 14(1), 011056 (2024).
3. Xuening Cao, Hao Yang, Zu-Lei Wu, and Bei-Bei Li*, “Ultrasound sensing with optical microcavities” Light: Sci. Appl. 13, 159 (2024).
4. Min Wang#, Yuechen Lei#, Zhi-Gang Hu, Chenghao Lao, Yuanlei Wang, Xin Zhou, Jincheng Li, Qi-Fan Yang*, and Bei-Bei Li*, “Coupling ideality of standing-wave supermode microresonators,” Photonics Res. 8, 1610 (2024).
5. Zhi-Gang Hu, Kai Xu, Yu-Xiang Zhang, and Bei-Bei Li*, “Optical-microwave entanglement paves the way for distributed quantum computation,” Invited Perspective in Chin. Phys. Lett. 41(1), 014203 (2024).
6. Yanwu Liu, Chenghao Lao, Min Wang, Yinke Cheng, Shiyao Fu, Chunqing Gao, Jianwei Wang, Bei-Bei Li, Qihuang Gong, Yun-Feng Xiao*, Wenjing Liu*, Qi-Fan Yang*, “Integrated vortex soliton microcombs,” Nature Photonics (2024), Doi:10.1038/s41566-024-01418-x.
7. 刘健飞,胡志刚,高艺萌,李贝贝*,“光学微腔磁传感器”,光子学报 53, 0553108 (2024).
8. Hao Yang#, Xuening Cao#, Zhi-Gang Hu, Yimeng Gao, Yuechen Lei, Min Wang, Zhanchun Zuo, Xiulai Xu, and Bei-Bei Li*, “Micropascal-sensitivity ultrasound sensors based on optical microcavities,” Photonics Res. 11(7), 1139 (2023).
9. Yuechen Lei, Zhi-Gang Hu*, Min Wang, Yi-Meng Gao, Zhanchun Zuo, Xiulai Xu, and Bei-Bei Li*, “Free spectral range magnetic tuning of an integrated microcavity,” Fundam. Res. 3(3), 351-355 (2023).
10. 赵星昀,宋继恩,段冰,吴彦燃,马春晖,李贝贝,杨大全*,黄善国,“基于回音壁模式微泡腔的磁场传感研究,” 中国科学:物理学 力学 天文学 53(11), 114208 (2023)。
11. Yuechen Lei#, Zhi-Gang Hu#, Min Wang, Yi-Meng Gao, Zhanchun Zuo, Xiulai Xu, and Bei-Bei Li*, “Fully reconfigurable optomechanical add-drop filters,” Appl. Phys. Lett. 21(18), 181110 (2022).
12. Hao Yang, Zhi-Gang Hu, Yuechen Lei, Xuening Cao, Min Wang, Jialve Sun, Zhanchun Zuo, Changhui Li, Xiulai Xu, Bei-Bei Li*, “High-sensitivity air-coupled megahertz-frequency ultrasound detection using on-chip microcavities,” Phys. Rev. Appl. 18(3), 034035 (2022).
13. Bei-Bei Li*, Ling-Feng Ou, Yuechen Lei, and Yong-Chun Liu*, “Cavity optomechanical sensing,” Nanophotonics 10(11), 2799 (2021).
14. Bei-Bei Li, George Brawley, Hamish Greenall, Stefan Forstner, Eoin Sheridan, Halina Rubinsztein-Dunlop, Warwick P. Bowen*, “Ultra-broadband and sensitive cavity optomechanical magnetometry”, Photonics Res. 8(7), 1064 (2020).
15. Bei-Bei Li#, Jan Bilek#, Ulrich Hoff, Lars Madsen, Stefan Forstner, Varun Prakash, Clemens Schäfermeier, Tobias Gehring, Warwick P. Bowen*, and Ulrik L. Andersen, “Quantum enhanced optomechanical magnetometry,” Optica 5(7) 850-857 (2018).
16. Bei-Bei Li, Douglas Bulla, Varun Prakash, Stefan Forstner, Ali Dehghan-Manshadi, Halina Rubinsztein-Dunlop, Scott Foster, and Warwick P. Bowen*, “Scalable high-sensitivity optomechanical magnetometers on a chip,” APL Photon. 3(12) 120806 (2018). SciLight article: https://aip.scitation.org/doi/10.1063/1.5086075. Feature on the cover of APL Photonics.
17. Yong-Chun Liu*, Bei-Bei Li*, and Yun-Feng Xiao*, “Electromagnetically induced transparency in optical microcavities,” Nanophotonics 6(5) 789 (2017).
18. William R. Clements#, Bei-Bei Li#, Bo-Qiang Shen, and Yun-Feng Xiao*, “Raman-lasing dynamics in split-mode microresonators,” Phys. Rev. A 91(1), 013804 (2015).
19. Bei-Bei Li, William R. Clements, Xiao-Chong Yu, Kebin Shi, Qihuang Gong, and Yun-Feng Xiao*, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. 111(41), 14657-14662 (2014). Highlighted in Phys.org, Asian Scientist, and AZO nano.
20. Xiao-Chong Yu#, Bei-Bei Li#, Pan Wang, Limin Tong, Xue-Feng Jiang, Yan Li, Qihuang Gong, and Yun-Feng Xiao*, “Single nanoparticle detection in aqueous environment using a nanofiber pair,” Adv. Mater. 26(44), 7642-7647 (2014). Front cover page, highlighted in Materials Views, and AZO nano.
21. Bei-Bei Li, Yun-Feng Xiao*, Meng-Yuan Yan, William R. Clements, and Qihuang Gong*, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38 (11), 1802-1804 (2013).
22. Bei-Bei Li, Yun-Feng Xiao*, Chang-Ling Zou, Xue-Feng Jiang, Yong-Chun Liu, Fang-Wen Sun, Yan Li, and Qihuang Gong*, “Experimental controlling of Fano resonance in indirectly coupled whispering-gallery microresonators,” Appl. Phys. Lett. 100(2) 021108 (2012).
23. Bei-Bei Li, Yun-Feng Xiao*, Chang-Ling Zou, Yong-Chun Liu, Xue-Feng Jiang, You-Ling Chen, Yan Li, and Qihuang Gong*, “Experimental observation of Fano resonance in a single whispering-gallery microresonator,” Appl. Phys. Lett. 98(02), 021116 (2011).
24. Bei-Bei Li#, Qing-Yan Wang#, Yun-Feng Xiao*, Xue-Feng Jiang, Yan Li, Lixin Xiao, and Qihuang Gong, “On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator,” Appl. Phys. Lett. 96(25), 251109 (2010).
25. 唐水晶,李贝贝,肖云峰,“回音壁模式光学微腔传感”,物理 48, 137-147 (2019).
26. Wei-Liang Jin, Xu Yi*, Yi-Wen Hu, Bei-Bei Li*, and Yun-Feng Xiao, “Temperature-insensitive detection of low-concentration nanoparticles using a functionalized high-Q microcavity,” Appl. Opt. 52(2), 155-161 (2013).
27. Zhou-Chen Luo, Cao-Yuan Ma, Bei-Bei Li*, and Yun-Feng Xiao*, “MHz-level self-sustained pulsation in polymer microspheres on a chip,” AIP Advances 4, 122902 (2014). Invited paper.
28. Yi-Wen Hu, Bei-Bei Li, Yi-Xiang Liu, Yun-Feng Xiao*, Qihuang Gong*, “Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping,” Opt. Comm. 291, 380-385 (2013).
29. Yun-Feng Xiao*, Bei-Bei Li, Xiaoshun Jiang, Xiaoyong Hu, Yan Li, and Qihuang Gong, “High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip,” J. Phys. B: At. Mol. Opt. Phys. 43, 035402 (2010).
30. Yun-Feng Xiao*, Yong-Chun Liu*, Bei-Bei Li, You-Ling Chen, Yan Li, and Qihuang Gong*, “Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator,” Phys. Rev. A (Rap. Comm.) 85(3), 031805(R) (2012).
31. Yong-Chun Liu, Yun-Feng Xiao*, Bei-Bei Li, Xue-Feng Jiang, Yan Li, and Qihuang Gong*, “Coupling of a Single Diamond Nanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefitting from Rayleigh Scattering,” Phys. Rev. A (Rap. Comm.) 84, 011805(R) (2011).
32. Yun-Feng Xiao*, Chang-Ling Zou, Bei-Bei Li, Yan Li, Chun-Hua Dong, Zheng-Fu Han, and Qihuang Gong*, “High-Q exterior whispering gallery modes in a metal-coated microresonator,” Phys. Rev. Lett. 105(15), 153902 (2010).
33. Linbo Shao, Xue-Feng Jiang, Xiao-Chong Yu, Bei-Bei Li, William R. Clements, Frank Vollmer, Wei Wang, Yun-Feng Xiao*, and Qihuang Gong*, “Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening,” Adv. Mater. 25(39), 5616-5620 (2013). Frontispiece paper, Highlighted in materialsviews.com, materialsviewschina.com.
34. Xiao-Chong Yu, Yanyan Zhi, Shui-Jing Tang, Bei-Bei Li, Qihuang Gong, Cheng-Wei Qiu, and Yun-Feng Xiao*, “Optically sizing single atmospheric particulates with a 10-nm resolution using strong evanescent field”, Light: Sci. App. 7, 18003 (2018).
35. Xu Yi, Yun-Feng Xiao*, Yong-Chun Liu, Bei-Bei Li, You-Ling Chen, Yan Li, and Qihuang Gong*, “Multiple-Rayleigh-scatterer-induced mode splitting in a high-Q whispering-gallery-mode microresonator,” Phys. Rev. A 83(02), 023802 (2011).
36. Zhao-Pei Liu, Yan Li, Yun-Feng Xiao, Bei-Bei Li, Xue-Feng Jiang, Yi Qin, Xiao-Bo Feng, Hong Yang, and Qihuang Gong, “Direct laser writing of whispering gallery microcavities by two-photon polymerization,” Appl. Phys. Lett. 97(21), 211105 (2010).
37. Yong-Chun Liu, Yun-Feng Xiao*, Xue-Feng Jiang, Bei-Bei Li, Yan Li, and Qihuang Gong*, “Cavity-QED treatment of scattering-induced free-space excitation and collection in high-Q whispering-gallery microcavities,” Phys. Rev. A 85(01), 013843 (2012).
38. Xu Yi, Yun-Feng Xiao*, Yan Li, Yong-Chun Liu, Bei-Bei Li, Zhao-Pei Liu, and Qihuang Gong*, “Polarization-dependent detection of cylinder nanoparticles with mode splitting in a high-Q whispering-gallery microresonator,” Appl. Phys. Lett. 97(20), 203705 (2010).
39. Christiaan Bekker, Christopher G. Baker*, Rachpon Kalra, Han-Hao Cheng, Bei-Bei Li, Varun Prakash, and Warwick P. Bowen, “Free spectral range electrical tuning of a high quality on-chip microcavity”, Opt. Express 26(26), 33649-33670 (2018)).
40. Xue-Feng Jiang, Yun-Feng Xiao*, Chang-Ling Zou, Lina He, Chun-Hua Dong, Bei-Bei Li, Yan Li, Fang-Wen Sun, Lan Yang, and Qihuang Gong*, “Highly unidirectional emission and ultralow-threshold lasing from on-chip ultrahigh-Q microcavities,” Adv. Mater. 24(35), OP260 (2012). Highlighted in materialsviews.com, Optik & Photonik, and Optics and Photonics News.
Submitted papers:
1. Ze Wang#, Kang-Kang Li#, Yue Wang#, Xin Zhou, Yin-Ke Cheng, Boxuan Jing, Fengxiao Sun, Jincheng Li, Zhilin Li, Qihuang Gong, Qiongyi He*, Bei-Bei Li*, Qi-Fan Yang*, “Large-scale cluster quantum microcombs,” Science (2024), under review.
2. Xuening Cao, Hao Yang, Min Wang, Zu-Lei Wu, Yuanlei Wang, Chenghao Lao, Qi-Fan Yang, and Bei-Bei Li*, “Nanopascal-sensitivity, integrated cavity optomechanical ultrasound sensors,” Submitted.
Book chapters:
1. Bei-Bei Li, Xiao-Chong Yu, Yi-Wen Hu, William R. Clements, and Yun-Feng Xiao*, “Highly sensitive sensing with high-Q whispering gallery microcavities,” A book chapter in “Handbook of Photonics for Biomedical Engineering”, Springer Press (2016).
专利:
1. 光学读出的交变梯度磁强计测量系统,发明人:李贝贝,陆俊,胡志刚,刘健飞,高艺萌,李国强。申请号:2023112391753。
2. 一种高灵敏片上光力磁力仪,发明人:李贝贝、胡志刚、高艺萌、刘健飞、蔡建旺、刘永昌。申请号:202410038634.X。
目前的研究课题及展望:
目前主持或参与以下项目:
1. 国家自然科学基金优秀青年项目,“微腔精密测量”,2023.01-2025.12,200万,主持。
2. 国家自然科学基金“新型光场调控物理及应用”重大研究计划培育项目,“双盘光学微腔的磁光调控及其磁场传感应用研究”,2020.01-2022.12,80万,主持。
3. 国家自然科学基金面上项目,“基于光学微腔—微悬梁机械振子耦合光力系统的kHz频段高灵敏磁力仪”,2022.01-2025.12,62万,主持。
4. 国家自然科学基金青年项目,“基于芯片上光力微腔磁力仪的研究”,2018.01-2020.12,25万,主持。
5. 中科院基础前沿科学研究计划“从0到1”原始创新项目,“基于片上集成光学微腔的低频段高灵敏磁力仪”,2019.09-2029.08,600万,主持。
6. 军委科技委XX专题,“基于光学微腔的高灵敏度位移探测机理研究”,2021.07-2022.12,80万,主持。
7. 中科院物理所启动经费,以及中科院配套支持经费,2018.10-2023.12,480万,主持。
8. 科技部重点研发计划项目,“新型激子极化激元的多场调控及应用”,130万,参与。
9. 国家自然科学基金重点项目,“低维半导体体系中的激子物理及其与高Q微腔的相互作用”,2020.01-2024.12,330万,参与。
培养研究生情况:
自2019年以来开始组建微腔小组研究团队,目前正在培养8名所内正式的硕博连读学生,以及6名联培学生。目前已毕业一名联培学生,所内正式学生还未有毕业。培养的学生中有2人已获得物理所所长奖学金表彰奖,2人获得三好学生称号,1人获得优秀干部称号。每年 情况:
研究生:每年招收2~3名直博生或硕博连读生,欢迎具备物理学或光学背景的学生报考。鼓励学生出国开会和到国外研究组交流。
博士后:招收1~2名博士后,欢迎具有物理学、光学研究背景,尤其是光学微腔背景的博士联系。
其他联系方式:
libeibei@iphy.ac.cn
办公室:M934
电话:
010-82649384
Email: