李国栋

简介


2006年毕业于内蒙古师范大学物理系,获理学学士学位;

2006-2011年于中国科学院国家纳米科学中心硕博连读,获理学博士学位;

2011-2019年先后于美国凯斯西方储备大学(CWRU)和德国莱布尼兹固体与材料研究所(IFW Dresden)从事博士后研究工作;

2019年入选中国科学院物理研究所引进海外杰出人才,回国工作,副研究员,博士生导师。

主要研究方向


先进固态制冷技术研发与应用

热电材料是一类能实现热能和电能相互直接转换的功能材料,作为一种清洁能源技术,基于其制备的发电(Seebeck效应)或制冷(Peltier效应)模块具有无机械运动部分、无化学反应、静音、安全、稳定、寿命长等特点,在深太空探测器自供电、废热回收利用、全固态制冷及热能管理等领域有着广泛的应用前景。我们的研究主要聚焦于先进功能热电材料的集成制备、输运表征、模块构筑及应用开发,针对制冷器件的极限温差和效率提升瓶颈,凝练关键科学技术问题,打造材料制备—物性测量—器件构筑—模块应用的全链条研究,目前研究课题包括但不限于:

(1)热电功能材料的制备及测量;

(2)固态制冷器件的构筑及应用;

(3)微型热电器件的芯片集成及应用。

过去的主要工作及获得的成果


1. 将微机电加工工艺(MEMS)与电化学沉积手段(ECD)相结合,成功制备了具有高集成密度的微型热电制冷器件(micro-TECs),集成密度高达5500/cm2,并首次系统测量了微型热电制冷器件的长期服役性,和循环稳定性(1千万次以上),所得器件数据为领域内领先,此工作被Nature Electronics杂志选为当期封面文章报道
2. 利用应力调控自卷曲(strain-engineered self-rolling)的方法,发展了一种制备单晶/非晶(Si/SiOx)、半导体/金属(GaAs/Metal)、无机/有机(GaAs/Polymer)杂化超晶格的方法,并研究了各体系的热学传输特性,发现通过调控超晶格薄膜的界面特性可以很有效地降低材料的热导率。

3. 研究了低维电子体系,如:零维量子点(GaSb/GaAs Type II QDs)、一维纳米线(InAs, Bi2Se3)、二维电子气(GaAs/AlGaAs heterojuction)的电学和热学输运特征。

相关成果发表在Nature Electronics, Joule,Energy Environ. Sci., Adv. Mater., iScience, ACS Nano, Nano Letter, Appl. Phys. Lett.等国际学术期刊上。

代表性论文及专利


团队近期工作:

  • 23. R. Sun, et. al., High anisotropy in electrical and thermal conductivity through the design of aerogel-like superlattice (NaOH)0.5NbSe2, Nature Communications (2023) 14:6689
  • 22. Y. Jing, et. al, Scalable manufacturing of a durable, tailorable, and recyclable multifunctional woven thermoelectric textile system, Energy Environ. Sci., 2023, 16, 4334
  • 21. N. Chen, Hangtian Zhu,* Guodong Li, Zhen Fan, Xiaofan Zhang, Jiawei Yang, Tianbo Lu, Qiulin Liu, Xiaowei Wu, Yuan Yao, Youguo Shi, Huaizhou Zhao,* Improved figure of merit (z) at low temperatures for superior thermoelectric cooling in Mg3(Bi,Sb)2, Nature Communications (2023) 14:4932
  • 20. Q. Dong, et. al., A quasi-one-dimensional bulk thermoelectrics with high performance near room temperature, Science Bulletin 68 (2023) 920–927
  • 19. T. Lu, et. al., Synergistically enhanced thermoelectric and mechanical performance of Bi2Te3 via industrial scalable hot extrusion method for cooling and power generation applications, Materials Today Physics 32 (2023) 101035
  • 18. Y. Zheng, et. al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling, Energy Environ. Sci., (2022).
  • 17. A. Dutt, et. al., Geometric Study of Polymer Embedded Micro Thermoelectric Cooler with Optimized Contact Resistance, Adv. Electron. Mater. 2022, 2101042.
  • 16. K. Jia, et. al., Emergence of 1/3 magnetization plateau and successive magnetic transitions in Zintl phase Eu3InAs3.  Physical Review Research, 2021, PHYSICAL REVIEW RESEARCH 3, 043178 (2021).
  • 15. J. Guo, et. al., “Doping high-mobility donor–acceptor copolymer semiconductors with an organic salt for high-performance thermoelectric materials”,Adv. Electron. Mater. 2020, 1900945 (2020).
  • 14. F. Yang, et. al., Effect of additives and optimized Cyclic voltammetry parameters on the morphology of electrodeposited Tellurium thin film, Journal of Electroanalytical Chemistry 925 (2022) 116872
  • 13. Q. Liu, et. al., Highly efficient thermoelectric air conditioner with kilo-Watt capacity realized by ground source heat exchanging system, iScience, 5, 104296, 2022.
  • 12. R. Pan, et. al., Diversified Plasmonic Metallic Nanostructures with High Aspect Ratio based on Templated Electrochemical Deposition, J. Micromech. Microeng. 32 (2022) 054002.
  • 11. Y. Zheng, et. al., Durable, stretchable and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling, Energy Environ. Sci., 2022 15, 2374.
  • 10. Q. Liu, et. al., Micro thermoelectric devices: from principles to innovative applications, Chinese Physics B, 2022, 21(4): 047204.
  • 9. A. Dutt, et. al., Geometric Study of Polymer Embedded Micro Thermoelectric Cooler with Optimized Contact Resistance, Adv. Electron. Mater. 2022, 2101042.
  • 8. J.Yang, et. al., Next-Generation Thermoelectric Cooling Modules Based on High-Performance Mg3(Bi,Sb)2 Material,Joule, 2021, 6, 1-12.
  • 7. K. Jia, et. al., Emergence of 1/3 magnetization plateau and successive magnetic transitions in Zintl phase Eu3InAs3. Physical Review Research, 2021, 3, 043178 (2021).
  • 6. S. Moradi, et. al., Highly Symmetric and Extremely Compact Multiple Winding Microtubes by a Dry Rolling Mechanism, Adv. Mater. Interfaces, 2020, 1902048 (2020)
  • 5. L. Gao, et. al., High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAsx, CHIN. PHYS. LETT. Vol. 37, No. 6, 066202 (2020)
  • 4. V. Barati, et. al., “Thermoelectric characterization platform for electrochemically deposited materials”, Adv. Electron. Mater. 2020, 1901288 (2020)
  • 3. J. Guo, et. al., “Doping high-mobility donor–acceptor copolymer semiconductors with an organic salt for high-performance thermoelectric materials”, Adv. Electron. Mater. 2020, 1900945 (2020)
  • 2. E. Song, et. al., “Thickness-Dependent Electronic Transport in Ultrathin, Single Crystalline Silicon Nanomembranes”, Adv. Electron. Mater. 2019, 1900232 (2019)
  • 1. D. A. Lara Ramos, et. al., “Design Guidelines for Micro-Thermoelectric Devices by Finite Element Analysis”, Adv. Sustainable Syst. 2019, 1800093 (2019)

个人代表工作:

  1. G. Li,* J. Garcia Fernandez, D. Lara Ramos, V. Barati, N. Perez, I. Soldatov, H. Reith, G. Schierning, and K. Nielsch, “Integrated micro-thermoelectric coolers with rapid response time and high device reliability”, Nat. Electronics 1, 555 (2018, Cover page) (citation >100次).
  2. G. Li,* M. Yarali, A. Cocemasov, S. Baunack, D. Nika, V. M. Fomin, S. Singh, F. Zhu, A. Mavrokefalos and O. G. Schmidt, “In-Plane Thermal Conductivity of Radial and Planar Si/SiOx Hybrid Nanomembrane Superlattices”, ACS Nano 11, 8215−8222 (2017).
  3. Q. Liu, F. Wei, G. Li,* Z. Kan, J. Yang, H. Zhu, B. Wang,* H. Zhao,* Highly efficient thermoelectric air conditioner with kilo-Watt capacity realized by ground source heat exchanging system, iScience, 5, 104296 (2022).
  4. G. Li, D. Liang, Richard L. Qiu and Xuan P. A. Gao, “Measurement of thermal conductivity of individual Bi2Se3 nano-ribbon by self-heating three-omega method”, Appl. Phys. Lett. 102, 043104 (2013).
  5. G. Li,  H. Yin, Q. S. Zhu, H. Sakaki, and C. Jiang, “Short range scattering mechanism of type-II GaSb/GaAs quantum dots on the transport properties of two-dimensional electron gas”, Journal of Applied Physics 108, 043702 (2010).

目前的研究课题及展望


目前主要研究的课题有:微型热电器件的可集成化构筑及其在微区温控和能源收集等领域的应用;高效热电材料的电化学生长;薄膜热电材料的制备及表征;新型高效能锑化镁基热电材料的制备及器件构筑。

       主持的科研项目:国家自然科学基金面上项目(2022.01-2025.12);北京市自然科学基金面上项目(2022.01-2023.12);物理所仪器设备技术创新项目(2021.06-2023.06);中科院人才项目(2019.05-2025.05)。

       参与的研究项目:(1)科技部国家重点研发-变革性技术关键科学问题 “基于多重有序结构调控的低温区用高效低成本热电材料与新型器件”(2019.09-2024.08);(2)科技部国家重点研发-变革性技术关键科学问题 “面向宽温域功能器件的连续组分外延薄膜技术与材料” (2021.11-2026.11).

培养研究生情况


拟每年招收1-2名硕/博士研究生,欢迎有物理、材料、微电子等专业背景的考生报考。

其他联系方式


应用物理中心链接:https://apc.iphy.ac.cn/member_detail.php?id=42527

Email


gdli@iphy.ac.cn

Baidu
map